PSI/PORT Score: Pneumonia Severity Index for CAP (ADMIT >90)

Risk (yes/no)	Score	Risk (yes/no)	
Age	I/YEAR	SBP<90	20
Sex (M/F)	F (-10)	T<35C/95F;>39.9/103.8	15
NH resident	10	P>124	10
Neoplastic dz hx	30	pH<7.35	30
Liver dz hx	20	BUN>29	20
CHF hx	10	Na<130	20
CV dz hx	10	Glu>249	10
Renal dz hx	10	Hct<30	10
AMS	20	pO2<60	10
RR>29	20	CXR: Pleural effusion	10

PSI and Admission Decision

- Class I or II Outpatient Therapy
- Class III Outpatient Therapy or Observation
- Class IV or V Inpatient (>90)
- Utilizing the PSI, <1% mortality in those recommended for outpatient therapy (but 4.3% subsequent admission to the ICU)
- *Observation **Inpatient

PSI Class, Mortality in PORT Cohort

Class	Points	Mortality (%)
I	No predictors	0.1
II	=70</th <th>0.6</th>	0.6
*	71-90*	0.9
IV**	91-130**	9.3
V	>130	27.0

https://www.mdcalc.com/psi-port-score-pneumonia-severity-index-cap

CURB-65 and PNA Severity

- CURB-65 provides risk stratification of CAP in ED for patients.
- CURB-65 offers equal sensitivity of mortality prediction due to CAP as PSI but has a higher specificity (74.6%) than PSI (52.2%).
- Clinical Indicator

Confusion:	+I for YES	If CURB-65 of 2 or more place in house (OBS) and
B U N > 19mg/dl:	+I for YES	
Resp Rate > 30:	+I for YES	reassess on D-Day for IP
S B P < 90 or DBP < 60	+I for YES	
>65	+I for YES	

- Score (> 3 deems inpatient consideration, 2 is OBS consideration)
 - 0-1 Point Low severity, risk of death < 2%, outpatient therapy
 - 2 Points Moderate severity, risk of death 9%, consider hospitalization (Obs vs IP)
 - 3-5 Points High severity, risk of death >22%, Hospitalize as Inpatient and consider ICU if score 4-5

SMART-COP <50/>50 yoa

☐ Systolic BP <90 2 points

■ Multilobar infiltrates
I point

□ Albumin <35g/l I point

☐ Resp Rate >25/>30 I point

□ Tachycardia >125/min | point

☐ Confusion (acute) I point

□ Oxygen low <93/<90 2 points</p>

□ pH < 7.35 2 points

Maximum= 11

Need for intensive respiratory or vasopressor support

 \square 3-4: I in 8 chance of needing IRVS,

 \square <u>5-6</u>: I in 3 risk,

 \square >7: 2 in 3 in needing IRVS.

HF Respiratory Failure

- Acute respiratory failure types
 - Hypoxemic: low arterial levels (PaO₂ < 60 mmHg)
 - 60-80 mmHg is 91 \rightarrow 95% sat, < 60 mmHg is "resp failure"
 - Hypercapnic: elevated CO₂ (PaCO₂ > 50 mmHg)
- Clinically significant when symptomatic and usually diagnosed with ABG (pO2 < 60 mmHg), or pulse oximetry (<90%)
- PE findings: tachypnea (RR> 20) or hypopnea (<10), wheezing, increased work of breathing (retractions, acces. muscle use), AMS, cyanosis, impaired speech, DOE, etc.
- Hypoxemia (NEED BASELINE SAT!!!)
 - New O₂ requirement for supplemental O₂ due to hypoxia
 - Patient with baseline need for supplemental oxygen who now requires increased supplemental oxygen to maintain oxygenation at baseline or acceptable level
 - Decr. baseline pO_2 by > 10 mmHg OR SpO_2 < 91% on usual home O_2 amount